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Abstract 

Alexander Herman 

KINEMATIC ANALYSIS OF SPINAL CORD INJURY ANIMALS TREATED WITH A 

NEUROTROPHIN-INFUSED SCAFFOLD AND BODY WEIGHT SUPPORTED 

TREADMILL TRAINING 

2017-2018 

Dr. Anita Singh 

Master of Science in Mechanical Engineering 

 

Spinal Cord Injury (SCI) is a condition that affects around 250,000 Americans 

with no cure. Existing treatments rely on physical therapies such as body weight 

support treadmill training (BWSTT). Treatments currently being researched include 

the use of implantable cells and biomaterials. Our study investigated the changes in 

locomotive gait and range of motion via a combinational treatment using a 

bioengineered scaffold [poly (N-isopropyl acrylamide) polyethylene glycol 

(PNIPAAm-g-PEG) with BDNF and NT-3] and rehabilitation training using BWSTT in 

a clinically relevant contusion SCI animal model. Five different groups of animals 

(Sham, Injury, BWSTT, Implant, and Combinational) were tested on a treadmill with 

BWSTT at three different BWS (75%, 65%, and 55%) and two different speeds (7 

cm/s and 10 cm/s). Using three motion capture cameras, kinematic data were 

acquired and analyzed to study functional recovery in these groups. Our results 

show some kinematic recovery in the Combination therapy and BWSTT animals. 

Step height, length, and number of steps were significantly higher in these groups of 

animals. The obtained data warrant further studies that aim to investigate the 

efficacy of different biomaterial implants and combinational therapies.
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Chapter 1 

Introduction 

1.1 Background 

Spinal Cord Injury (SCI) is a significant cause of morbidity and mortality in 

the United States. According to the National Institute of Neurological Disorders and 

Stroke, around 12,000 SCIs occur each year, which costs the health care system 

approximately $3 billion dollars annually [1]. SCI typically occurs when either a 

piece of spinal vertebrae breaks or dislocates in a way that puts enough pressure on 

the spinal cord to cause some damage. Any damage that does occur can have an 

effect at or below the level of injury [1]. The majority of SCIs are caused by motor 

vehicle accidents, with other major causes being falls, and acts of violence. More 

about the epidemiology of SCI is discussed in Chapter 3.1. 

Currently, there is no known cure for SCI. The options available only reduce the 

symptoms of SCI [2]. These symptoms can be very debilitating and include 

decreased motor function, and secondary complications such as circulation, 

breathing problems, lower bone density, and increased muscular atrophy [1], [3]. 

One of the most widely used current treatments for SCI is body weight-support 

treadmill training (BWSTT). While it is one of the most widely used treatments, 

BWSTT may not be superior to other methods, yet it is the treatment that deals with 

the limited activity involved in SCI patients. It is only effective when there is a 

partial SCI. The majority of SCIs that occur are partial SCIs that allow some 

commutation below the injury location [3]–[5]. What has been studied in the past 

has been the use of cell therapies. Cell transplants alone are not sufficient for 
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regeneration and can pose problems with immune rejection, tumor generation, and 

an ineffective environment for regeneration [2], [6]. Additionally, to supplement 

these treatments, growth factors called neurotrophins are added to these 

transplants such as neurotrophin 3 (NT-3) and brain-derived neurotrophic factor 

(BDNF). In terms of advancing the treatment of SCI, research has been focused in 

fields such as regeneration of partially damaged SC tissue and the use of 

biomaterials to aid in neuron or axonal regeneration, with an additional focus on a 

combination of biomaterial and cell transplants. This combinational approach helps 

alleviate the concerns of cell transplants alone by providing stability to the site and 

a suitable environment for delivering new cells to the point of injury [2]. The aim of 

our study is to help overcome the problems of cell transplants alone by using a 

specially designed biomaterial scaffold made from poly (N-isopropyl acrylamide) 

with poly (ethylene glycol) (PNIPAAM-g-PEG) infused with NT-3 and BDNF 

neurotrophin growth factors.  

While there has been a great deal of research on highlighting the effects of 

neuroregeneration of the axons, there have been few studies showing what these 

therapies have on the kinematic aspect of gait analysis and how these therapies 

specifically compare to existing physical therapy techniques. The main focus of this 

study was to investigate the combinational effects of this bioengineered scaffold 

with neurotrophins along with existing rehabilitation therapies such a BWSTT. A full 

list of the abbreviations used in this paper can be found in Appendix A: Definitions 

and Aberrations.  
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1.2 Problem Statement 

To study changes in locomotive gait and range of motion after combinational 

treatment using a PNIPAAM-g-PEG bioengineered scaffold loaded with NT-3 and 

BDNF neurotrophins and rehabilitation training using body weight support 

treadmill training (BWSTT) in a clinically relevant contusion spinal cord injury (SCI) 

animal model. 

1.2.1 Hypothesis. The neurotrophin secreting scaffold will help promote 

neuroprotection and regeneration that will help improve the locomotion and range 

of motion of the animals when employed in conjunction with body weight support 

treadmill training compared to the scaffold and body weight support treadmill 

training treatment alone.  
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Chapter 2 

Anatomy 

2.1 Spine 

In vertebrate animals, the spine is a bony structure that consists of a series of 

bones called vertebrae and cartilage disks between each vertebra called 

intervertebral disks. Its main function is to protect the spinal cord. Additionally, it 

serves to support the skull and provides support to the ribs, pelvis, and back 

muscles. The spine functions as a flexible rod that provides some flexion and 

extension in the frontal and sagittal plane while also providing some rotation at the 

torso and head [7]. A picture describing the type of motion of the spine is shown in 

Figure 1.  

 

 

Figure 1. Diagram showing the different movements of the spinal column. From the 
sagittal plane there is extension and flexion; in the frontal plane, there is lateral 
extension and extension; and in transverse plane there is rotation in the trunk and 
neck. A total of 3 degrees of freedom is present [8] 
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The spine itself is divided into five different sections that correspond to the type of 

vertebrae, specifically the cervical, thoracic, lumbar, sacrum, and coccyx. At birth, a 

newborn starts out with 33 vertebrae (7 cervical, 12 thoracic, 5 lumbar, 5 sacral, 4 

coccygeal) but as the child grows, the sacral and coccygeal vertebrae fuse together 

and form 1 sacrum and 1 coccyx vertebrae bringing, the total vertebrae count in an 

adult to 26 [7]. In an adult, each section of vertebrae appears to have some curve 

when viewed from the sagittal plane. The cervical and lumbar sections have a 

convex shape, while the thoracic, sacral, and coccyx sections have a concave curve 

with respect to the anterior side of the body. From a mechanical perspective, the 

curves of the spinal column act to improve its strength, and serve as natural 

dampers or shock absorbers when performing locomotion and helping to maintain 

an upright balance [7]. A diagram of the spinal column showing the different 

sections of the spine from the frontal and sagittal planes is shown in Figure 2. 
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Figure 2. Frontal and sagittal views of the adult spinal column. The spine in the 
anterior view does not show any curves whereas the lateral view shows the 
different curvatures of the different sections of the spinal column [7]. 
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2.2 Nervous System 

The nervous system is a network of connected cells called neurons and 

support cells called neuroglia. A neuron is a special type of cell that allows electro-

chemical signals to be transmitted throughout the body. This network of neurons is 

responsible for regulating a person’s bodily actions. These actions include 

controlling sensory functions for input, integrative functions for sensory for 

processing, and motor functions for output [7]. The nervous system itself can be 

broken down into two main systems: the central nervous system (CNS) and the 

peripheral nervous system (PNS), which are discussed in detail in Chapter 2.2.1 and 

2.2.2.  

2.2.1 Central nervous system (CNS). The central nervous system (CNS) is 

the part of the nervous system that encompasses the brain and the spinal cord. It is 

commonly referred to as the control center of the body and controls vital bodily 

functions. The CNS itself contains about 100 billion neurons and is the source of 

signals that trigger the endocrine system to secrete a specific chemical or hormone, 

and trigger muscular systems to contract a specific motion. It is also on the receiving 

end of sensory inputs from different systems across the human body processes [7]. 

2.2.2 Peripheral nervous system (PNS). The peripheral nervous system is 

every other piece of nervous tissue outside of the central nervous system, including 

sensory glands/receptors and nerves that branch from the spinal cord throughout 

the body [7]. Nerves are defined as bundles of axons and connective tissue that 

originates from the CNS and serves a specific set of regions within the body. At the 

point where the nerves meet the CNS, there are small lumps of nervous tissue called 
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ganglia that serve as the transition point between the CNS and PNS. A sensory gland 

that is part of the PNS is simply referred to as a structure that monitors external 

changes in the environment. PNS is broken down into three different systems: 

somatic nervous system (SNS), autonomic nervous system (ANS), and an enteric 

nervous system (ENS). The SNS contains sensory receptors and motor neurons from 

different parts of the body that are responsible for controlling skeletal muscle. The 

ANS controls sensory receptors and motor neurons that control autonomous 

functions of the body like heart rate and breathing. The majority of the ANS is 

located in visceral organs. The ANS itself has two separate divisions: the 

sympathetic and parasympathetic divisions. These typically increase and decrease 

organ activity, respectively. Finally, the ENS is the part of the PNS that controls the 

digestive tract. Although the ENS technically shares some sympathetic and 

parasympathetic nerves with the ANS, it mostly operates independently [7]. A block 

diagram that identifies the CNS and the three separate systems of the PNS is shown 

in Figure 3. 
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Figure 3. A block diagram of the interactions between the central nervous system 
and the peripheral nervous system. The diagram highlights the different receptors 
and motor neurons in the three different systems in the peripheral nervous system. 
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Chapter 3 

Spinal Cord Injury 

3.1 Epidemiology  

According to the National Institute of Health’s Institute of Neurological 

Disorders and Stroke, there are about 250,000 Americans living with SCI. This figure 

grows by 12,000 a year in the United States alone. SCI appears mostly in men (about 

80%) [1]. According to the National Spinal Cord Injury Statistical Center (NSCISC), 

about 40% of all spinal cord injuries are caused from vehicular accidents, about 

30% from falls, and the rest from violence, sports or other means [9]. A chart with a 

more detailed breakdown is shown in Figure 4. 

 

 

Figure 4. Causes of Spinal Cord Injury for patients admitted with SCI in 28 hospitals 
enrolled in the NSCISC’s SCI Model System from September 2005 to March 2015. 
The total number of patients admitted is 6,766 [9]. 
 

39% 

30% 

14% 

8% 

9% 

Causes of SCI for NSCISC's Model Hospital Patients  

Vehicular Accidents

Falls

Violence

Sports and Recreation

Other

n = 6,766 
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In addition to the primary injury of SCI, many serious secondary complications can 

ensue. Some of these secondary effects include a form of paralysis caused by 

inflammation of the spinal cord and excessive neurotransmitter release. Patients 

can also experience complications resulting from the injury, such as difficulty 

breathing, muscle spasms, pneumonia, and circulation problems [1]. Over the 

course of time the complications can cause great burdens for the patient and 

caregivers [10]. 

3.2 Types of SCI 

Generally, there are two broad types of SCI: complete and incomplete. A 

complete SCI is defined as the absence of nerve activity below the point of injury, 

and an incomplete SCI is defined as in the presence of some nervous activity 

preserved below the point of injury. The determination of whether the SCI is one of 

those two types is based on the use of the American Spinal Injury Association (ASIA) 

Impairment Scale [1], [2]. The scale is broken down into five levels ranging from A 

to E, where A is a complete injury and E is normal function in terms of motor and 

sensory function. A table describing the different levels of the AISA scale is shown in 

Table 1. 
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Table 1 
 
Table of the Classifications of the American Spinal Injury Association Impairment 
Scale. Each classification defines a different level of SCI ranging from classification A, 
describing a complete SCI, to classification E, describing no SCI and normal motor and 
sensory function. Source: NIH Institute of Neurological Disorders and Stroke [1]. 
 

American Spinal Injury Association (ASIA) Impairment Scale  

Classification Description 

A 
Complete: no motor or sensory function is preserved below the 

level of injury, including the sacral segments S4-S5 

B 

Incomplete: sensory, but not motor, function is preserved below 

the neurologic level and some sensation in the sacral segments 

S4-S5 

C 

Incomplete: motor function is preserved below the neurologic 

level, however, more than half of key muscles below the 

neurologic level have a muscle grade less than 3 (i.e., not strong 

enough to move against gravity) 

D 

Incomplete: motor function is preserved below the neurologic 

level, and at least half of key muscles below the neurologic level 

have a muscle grade of 3 or more (i.e., joints can be moved 

against gravity) 

E Normal: motor and sensory functions are normal 

 

3.3 Current Treatments for SCI 

There are no current marketable devices or clinical procedures to completely 

cure either complete or incomplete SCI. The only points of care are to treat the 

symptoms of SCI using physical therapy, or to try methods to restore neural 

function, with little success [2], [11], [12]. Types of treatment that are available for 

treating SCI are pharmaceuticals, implants, and physical therapy methods. 

Pharmaceutical methods such as corticosteroids are used to reduce the body’s 

inflammatory response after SCI. Implants, while still being investigated and 
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improved on, are based on biocompatible materials that allow cells to grow or that 

can be implanted beforehand and are discussed in detail in Chapter 3.6. Physical 

therapies such as BWSTT and Functional Electrical Stimulation (FES) that allow 

increasing nervous activity through locomotion or external stimulation that can aid 

in regaining nervous function to damaged areas are discussed in detail in Chapter 

3.4. 

3.3.1 Pharmaceutical methods. Pharmaceutical methods involve the 

delivery of a pharmaceutical substance within a short amount of time of the primary 

injury; typically, corticosteroids such methylprednisolone [12]. Corticosteroids act 

to suppress the immune system response that occurs from the result of an injury 

such as an SCI. 

3.4 Physical Therapy 

3.4.1 Body weight support treadmill training (BWSTT). BWSTT is a type 

of physical therapy that involves the use of a treadmill mechanism that uses an 

adjustable shoulder harness to support patients by taking the weight off their leg 

[13]. This system can be adapted for use with manual assistance or with the use of 

robotic gait trainers that allow the user to increase intensity, reduce therapist 

fatigue, and monitor different aspects of the gait cycle, such as joint position and 

forces applied, potentially increasing efficiency of the treatment [14]–[18]. 

Examples of the setup that are used to perform BWSTT are shown in Figure 5. This 

therapy has been investigated numerous times in animal models and has made it to 

clinical studies, along with a different type of system that achieves similar results 
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[19]. Recent studies, however, have found that the success of the treatments in 

animal studies might not transfer over to human clinical studies; nevertheless, the 

treatment itself provides potential for improvement through the use of biomaterials, 

which are discussed in Chapter 4.2 [4], [19]. 

 

 

Figure 5. BWSTT systems that are used to help treat SCI in humans. Left is from 
Hornby et al., 2005 and Right is from Dietz, 2008 [20], [21]. 
 

3.4.2 Functional electrical stimulation (FES). Functional electrical 

stimulation (FES) is a type of therapy that involves the use of electrical signals sent 

to different muscle groups that help in activation during an activity or exercise. 

Several studies have shown that temporary use of FES after a SCI can help restore 

some voluntary muscle control. It is hypothesized that FES can help stimulate the 

CNS to become more functional after an injury [22], [23]. Normally, this therapy is 

not used by itself but as a supplement to other methods of physical therapy, such as 

cycling and treadmill training [23]. While our studies do not include the use of FES, 

this method of physical therapy holds promise for our future work. 
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3.5 Cell Based Transplants 

A growing type of treatment that has been researched is a neuroregeneration 

of neural tissue through the use of stem cells. Several types of stem cells are 

currently being explored in research such as neural (NSC), mesenchymal (MSC), 

embryonic (ESC), and induced pluripotent stem cells (iPSC) in addition non stem 

cells such as glial cells [2], [24]. Each of the different types of cell-based therapies 

has their advantages and disadvantages. For instance, NSCs have can provide 

supportive substrate for axonal regrowth and can help with remyelination of axons, 

MSCs are easy to extract and have low immunogenicity, ESC can easily differentiate 

to other types of cells and, iPSC have low immune responses and low ethical 

constraints [24]. However, each of these treatments still present issues that prevent 

them from being used for patients with SCIs. Some of those issues include ethical 

concerns with ESCs and NSCs, preventing immune responses and tumor generation 

along with the ability to differentiate to the desired cells. Several things that can be 

used to address some of these issues such as the implementation of neurotropic 

factors to help promote regeneration of nervous tissue and the implementation of 

biomaterial scaffolds to provide chemical, and mechanical properties, aid in 

differentiation, and help with cell survival are discussed in Chapter 3.6 [24]. A table 

highlighting the different advantages and disadvantages for each cell based 

treatment for SCI is shown in Table 2.  
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Table 2 
 
A table comparing the advantages and disadvantages of different cell based therapies 
for SCI. Sourced from Shi et al. 2017 [24]. 
 

 

 

3.6 Biomaterial Transplants 

In addition to Cell-Based transplants, a treatment that has also been used in a 

few animal studies is hydrogel-based biomaterial that helps promote the 

regeneration of axons after an injury. Hydrogels are simply materials that are water 

based gels that have the ability to closely mimic the tissues present in the CNS [2], 

[25]. These hydrogels typically develop into a scaffold, a temporary support 

structure that facilitates the growth of cells. Earlier types of regenerative therapies 

involved the use of stem cells alone. To address some of the issues with cell based 

transplants, current research is turning towards the use of combination treatment 

of biomaterial that are infused with stem cells or other growth factors such as 

neurotrophin 3 (NT-3) and brain-derived neurotrophic factor (BDNF) to help with 

neuroprotection and neuroregeneration. These growth factors are simply 

substances that help promote nerve growth and offer neuroprotection [2], [6], [24]. 
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3.6.1 Types of biomaterials. The biomaterials that have been used in 

previous literature are either natural or synthetic. Some of the naturally occurring 

materials are Matrigel, Collagen, Hyaluronic Acid, Alginate, and Dextran [6]. Some of 

the advantages of naturally occurring biomaterials are that they are easy to make, 

are biodegradable, and have properties that are recognized by the cells that allow 

for integration. However while they are natural, they can potentially increase an 

immune response, can biodegrade too rapidly, have low reproducibility, and can be 

difficult to sterilize [2], [6]. That last point is especially a concern when transitioning 

to clinical studies as lack of sterilization can lead to an immune response, which is 

one of the secondary effects resulting from a SCI.  

Consequently, synthetic biomaterials have been increasing in their use due to their 

customization and adaptability by combining different materials. Some of these 

materials can even be implemented minimally-invasively via injection, which can 

reduce the number of complications experienced in traditional surgery [6]. 

However, one problem with synthetic materials is that they have poor 

biocompatibility. This can present a problem when being used in a clinical setting as 

they must meet FDA guidelines before they can be marketed (e.g. meeting 

biocompatibility in ISO 10993) [26]. Their adaptability in being customized can help 

alleviate this issue [6]. Some of the synthetic materials that have been featured in 

some studies are derived poly(lactic acid) based or poly(lactic-co-glycolic acid), 

methacrylate-based materials such as poly[N-2-(hydroxypropyl) methacrylamide] 

(PHPMA) or poly (2-hydroxyethyl methacrylate) (PHEMA), and poly (N-isopropyl 

acrylamide) or PNIPAAm [2], [6], [27].  
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These biomaterials, in order to improve their effectiveness, have been combined 

with stem cells such as a neural, mesenchymal, as well as growth factors such as NT-

3, BDNF [2], [6], [27]. From Tsintou et al.’s review , the majority of studies used 

these combinational materials in transection and hemisection injury models and 

reported positive results with axonal regeneration [6]. For the use of our study, we 

used poly (N-isopropylacrylamide)-poly (ethylene glycol) (PNIPAAm-g-PEG) that 

secreted NT-3 and BDNF neurotrophins. PNIPAAm-g-PEG has the ability to deal 

with the biocompatibility problem of other synthetic biomaterial along with 

providing mechanical support and match the properties of tissue present in CNS. 

Another advantage is that it can be injected at room temperature and solidifies at 

body temperature [27]–[29]. Additionally, several studies focus on the direct effect 

of neuronal growth by itself but do not focus on the combined effect of physical 

therapy. The use of combinational therapy with hydrogel-based scaffolds seems to 

be the direction in which the treatment of SCI is heading, but more research is still 

needed in this field before clinical trials can be performed [2], [6]. Our study fills in 

the gap of what happens when the use of a novel biomaterial such as PNIPAAm-g-

PEG loaded with NT-3 and BDNF neurotrophins is provided and identifying any 

synergetic benefit with treadmill training. More about the kinematics aspect of the 

study is discussed in Chapter 4. 
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Chapter 4 

Kinematics  

4.1 Overview 

Kinematics is simply the study of the motion of objects or segments without 

considering the forces involved in producing the motion [30]–[32]. Kinematics is 

typically studied in biomechanics when the objective is to study how parts of the 

body move when other factors involved, such as the forces required, are not 

relevant. A kinematic study serves as a good starting point in the studies we are 

performing as it is relatively easy to measure and does not require an overly 

complicated setup. 

4.1.1 Gait analysis. Gait is a term that refers to bipedal locomotion, which 

requires coordination of several joints and muscles. The analysis of gait itself has 

been a major aspect of physical therapy and rehabilitation in a clinical setting and 

with technological advances. The practice of gait analysis itself is becoming easier, 

more accessible than ever, and allows more people to understand it [31]. Some 

aspects that are looked at as a part of gait analysis are range of motion in all three 

anatomical planes, joint angles, swing-stance durations, and forces imparted. Gait 

analysis can be achieved in several different ways, including the use of 

stopwatches[13], [33], [34]; switches and writing instruments for distance and time 

measurement; accelerometers[35], electrogoniometers [36][37], and motion 

capture systems for angle measurements [16], [34], [38]–[40]; force and pressure 
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plates[37], and electromyography (EMG) [5], [12], [36], [41]. We focused mainly on 

a motion capture system to study gait in our experiments. 

4.2 Available Kinematic Studies  

4.2.1 Human studies. Efforts to help improve human kinematics have 

typically been performed with robotic gait training systems and BWSTT as a form of 

physical therapy (PT) [3], [4], [14], [42]. Both treatments are related to each other; 

robotic gait training is based on BWSTT [14]. Some of the studies in question focus 

on using robotic training alone such as the Fleerkotte et al. study; but BWSTT 

studies in combination with EMG and other methods for evaluating locomotion are 

more abundant and are easier to set up.  

4.2.1.1 Effect of BWSTT on kinematics in humans. The determination of the 

efficacy of BWSTT systems is still at an early stage, despite the fact that several 

systems have been on the market for some time [14]. For the referenced robotic gait 

training study by Fleerkotte et al., out of the 10 study participants that completed 

the study in 8 weeks, between 89% and 100% of participants experienced improved 

kinematics such as step length (average increase of 0.03 m), hip range of motion 

(ROM) (increase of 2 degrees), with a 22% participant increase in symmetrical use 

of both legs. On average, walking speeds increased for their 6 and 10 meter walking 

tests to a speed of 0.06 m/s with 9/10 subjects experiencing improvements. The 

experiments of Fleerkotte et al. also indicated increase in total walking distance 

throughout the total rehabilitation durations that were not fixed distances (184 m to 

216 m), with 100% participant improvement. They concluded that robotic gait train 



www.manaraa.com

 

21 
 

is a feasible method of improving the walking ability for people with an incomplete 

SCI. While this treatment uses a form of BWSTT, the use of a robotic system helps to 

reduce the amount of labor and discomfort from the trainers [14]. Unlike the robotic 

system however, BWSTT has established literature to show its beneficial effects on 

locomotion and kinematics [43]–[47]. While there are several studies that 

demonstrate that BWSTT can improve locomotion, some other studies that used 

BWSTT such as Dobkin et al. included patients who, after BWSTT, underwent 

improvements that were not significant compared to other therapies. The Dobkin et 

al. study involved BWSTT and a more basic over-ground mobility training over the 

course of 12 weeks with follow-up at 6 months. The participants all had an SCI 

within 8 weeks at the start of the study, and were classified as a C and D on the ASIA 

scale (see Table 1). In both groups, the participants who were able to walk at the 

end of 6 months had improved kinematics such as speed and distance walked, and 

increased Walking Index for SCI scores, but the study did not produce different 

results between the two therapies. The study does highlight however that “BWSTT 

may be a valuable training adjunct in future trials of biologic interventions that 

promote axonal regeneration [42].” 

4.2.2 Animal studies. Compared to human studies, animal studies 

involving SCI are more abundant. A great deal of kinematic studies involve rats [5], 

[19], [40], [48]–[51] but there are some studies where other animals such as rabbits 

or cats were used [52], [53]. As with the human studies, there is a focus on BWSTT; 

but in addition, there are also studies on the use of biomaterial scaffolds and 
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combinational treatments that aim to help axonal regeneration that can lead to 

regained motor function [2], [22], [51], [54]. 

4.2.2.1 Effect of BWSTT on kinematics in animals. Before BWSTT was 

implemented in human studies, it was first developed from SCI animal models. 

While it has been studied for nearly 30 years and has had success in animal models, 

BWSTT procedures still need additional refining if the ultimate goal of rehabilitation 

is to regain motor function [19]. Some of the studies that have shown some success 

with BWSTT are Alluin et al. and Singh et al. [5], [40]. The Alluin et al. study 

evaluated the recovery of several kinematic parameters in rats, such as the number 

of consecutive steps walked on the treadmill, paw placement, and cycle alteration. 

Researchers trained the rats on a treadmill for 6 weeks of treatment after a 

contusion SCI and then evaluated each of these parameters. These parameters 

allowed them to classify locomotion into a scale between 0 and 3, where 3 were the 

best walkers and 0 were the worst, or those that did not walk at all. 

The study’s kinematic results indicated that hind limb training did increase “swing 

duration variation during locomotion.” They also indicated that locomotion could 

recover to a certain degree, but that the method of recovery was not limited to only 

BWSTT or to training before a SCI. These results help establish a baseline in terms of 

establishing how effective a specific treatment helps at improving locomotion. A 

figure of their swing and stance durations are shown in Figure 6 [40].  
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Figure 6. Swing and Stance duration plots from Alluin et al. 's study [40] 
 

Singh et al. study studied how effective locomotive recovery was in animals that 

received a contusion SCI that underwent BWSTT. The animals in the study had 

BWSTT after injury for 8 weeks, with a second transection surgery at 9 weeks and 

an additional 2 weeks of training. The researchers looked at parameters such as the 

length and height of step, and duration of the swing stance phases. Throughout the 

training, there was significant difference between the groups with BWSTT and no 

BWSTT at Week 5, but not at Week 9 in terms of swing duration, step height, and 

length. BWSTT for the groups that received the transection surgery at Week 9, the 

groups did not experience immediate locomotive loss, unlike the untrained groups. 

This result highlights that BWSTT may be required for maintenance of locomotive 

recovery and that it can help accelerate locomotive recovery, although it might not 

produce a better outcome. A figure of their step height and duration is shown in 

Figure 7 [5].  
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Figure 7. Step height, length, and swing duration result plots in Singh et al. [5].  
 

It is important to note that some of these results, although beneficial in animal 

studies, did not translate as well to human studies. This warrants animal studies to 

better understand human outcomes studies with BWSTT therapy, such as the use of 

body weight support apparatuses that are not limited to just a treadmill [19]. Some 

of the ideas that have been present in literature are therapies that include the use of 

biomaterials aid in the formation of new axonal pathways, are discussed in the next 

chapter.  
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4.2.2.2 Effect of biomaterials on kinematics. Newer studies utilize biomaterial 

scaffolds that aid in neural regrowth [2], [6], [12], [23], [25], but there are few 

studies comparing the effect of the use of biomaterial scaffolds after SCI to gait 

analysis. One study that reviews the existing literature on biomaterial for use with 

neural regeneration is Tsintou et al. This study found that many researchers are 

turning to therapies that involve the use of a scaffold combined with the use of cell 

or neurotrophic factors and have shown that there is some success in neural 

regeneration in vitro and in vivo with a few animal models. However, the technology 

is still in its infancy, and it is too early to determine its effectiveness [6]. Our 

experiments aimed to provide more clarity from a kinematic perspective through 

gait analysis when a biomaterial scaffold infused with neurotrophins was combined 

with BWSTT in a partial SCI animal model.  
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Chapter 5 

Experimental Setup 

In order to simulate a small treadmill for our animal experiments, a custom 

treadmill was designed from a modified belt sander hooked up to a stepper motor. A 

body weight support (BWS) arm mechanism was also developed as a part of the 

treadmill. The arm had a plate attached to it on one end to allow the animal to be 

connected to it via a vest and velcro straps. A load cell was attached on the other 

side of the arm. This load cell was designed to read the weight the animal was 

exerting on the BWS arm while it was walking on the treadmill. There was an 

additional stepper motor to control the amount of weight the arm needed to 

support, by applying a load on the other side of the arm. A picture of this treadmill 

setup is shown in Figure 8. It is similar to that of those setups used in Singh et al., 

Kruse et al., Nessler et al., and De Leon et al. just without the robotics arms [5], [16], 

[55], [56]. All of the components of the treadmill and BWS arm were controlled 

through a data acquisition unit or myDAQ® that is controlled with a custom 

LabVIEW® program (National Instruments, Austin, TX).  
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Figure 8. A Figure of the Treadmill used for BWSTT. The Treadmill belt was 
controlled by a stepper motor. The animal was attached to the velcro plate on BWS 
arm and secured with velcro straps. The weight that the animal displaced was 
controlled by the arm stepper motor by applying a load to it. 
 

This custom treadmill was placed on a steel table about 48” high. Before the animal 

was placed on the treadmill, its back left leg was shaved and the motion capture 

marker placements were marked on the skin before placing the adhesive markers 

on the leg joints of the animal. Markers were placed on the following five spots: the 

iliac bone, hip joint, knee joint, ankle joint, and the metatarsal. More details on the 

markers and motion capturing aspects are discussed in Chapter 5.1. The animal was 

then carefully placed in a vest that allows its head and sometimes its arms to peek 

through the vest. The positioning of the animal with labeled markers is shown in 

Figure 9. 
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Figure 9. The positioning of the animal on the treadmill. Before it was placed on the 
treadmill, the left hind leg is shaved, and then the marker placements are marked 
and then overlaid with reflective markers. The animal is then secured to BWS arm to 
the velcro plate with velcro straps. The five markers that are placed on the animal 
are labeled as such. 
 

In order to get the motion capture data necessary for the overall experiment, an 

OptiTrack (Natural Point Inc., Corvallis, OR) infrared motion capture system was 

implemented. This system was chosen based on its cost to frame rate ratio and 

resolution ratio compared to other commensurate systems. More details discussing 

the specifics of the camera system and how it was configured are discussed in 

Chapter 5.1.  

To properly evaluate the performance of the PNIPAAM-g-PEG scaffold with NT-3 

and BDNF neurotrophins, each set of animals was split into five different 
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experimental groups: Baseline, Injury, BWSTT, Implant, and Combination groups. 

Each of these groups gave a comparison point of different treatment options from 

which effectiveness of the biomaterial by itself or combined with existing therapies 

could be measured. Each of the animals walked on the treadmill at three different 

body weight supports (75%, 65%, 55%) and at two different speeds (7 cm/s and 10 

cm/s). The number of animals that performed each of these speeds and BWS varied 

depending on the animals’ ability. The groups themselves are discussed in more 

detail in Chapter 5.2.  

5.1 Motion Capture System 

Motion Capture is a way of recording a target within a capture volume with 

multiple cameras synced together from which 3D motion is extracted [57]. The 

specific system used is known as a passive reflective marker system. This system 

works by taking infrared light from markers placed in specific spots on a target and 

reflecting the light back to the camera [57]. Our motion capture system was capable 

of tracking markers with sub-millimeter accuracy with ideal capture volume size, 

lighting, and camera configuration [57]. By utilizing motion capture technology, we 

were able to obtain a more in depth look at the animals’ gait, such as measuring joint 

angles, ranges, and excursions, for each animal. Then, we compared that data to the 

different animals in each set. Our motion capture setup consisted of three motion 

capture cameras: 2 Flex 3s and 1 Flex 13, both from OptiTrack. When synced 

together, all three cameras could record at 100 frames per second (FPS) (100 FPS 

for the Flex 3 and 120 FPS for the Flex 13 by themselves). The Flex 3s produced an 

image resolution of 640x480 and the Flex 13 had a resolution of 1280x1024. Both 
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cameras were capable of sub-millimeter precision and were powered and 

synchronized through a standard USB 2.0 connection [58], [59]. The cameras are 

further discussed in Chapter 5.1.1. In addition to the cameras, some of the additional 

equipment needed for the motion capture setup includes the motion capture 

software Motive (Natural Point Inc., Corvallis, OR), a hardware key for the software, 

a computer, tripods, a USB hub to power the cameras, calibration wand, adhesive 

markers, USB cables, and a ground plane square (or three reflective markers). 

5.1.1 Camera layout. To accurately and properly capture the motion of the 

animal walking on the treadmill, the motion capture cameras were placed in a 

certain way such that 3D tracking data could be captured from any camera location. 

Since we were interested only in the left hind leg of the animal, the camera was 

positioned such that it was able to determine the location of each marker on the one 

hind leg. This allowed us to keep the cameras in close confinement with limited 

space. One issue that arose from limited space is the increased chance of inaccurate 

marker position data. This problem can be mitigated and is entirely dependent on 

the position of the cameras. Since the process of optical motion capturing works by 

comparing at least two different 2D images at the same point in time to generate 

position in a 3D capture volume, the cameras have to be at opposing angles so that 

there is overlap in each of the 2D images. The more overlapping images in the 

camera system, the more accurate the motion capture data. Since the animal was 

only going to be walking on the treadmill, the size of the capture volume was 

relativity small. For the setup, we had the Flex 13 orthogonal to where the hind leg 

would be on the treadmill. From there, our two Flex 3s would be approximately two 
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feet away from the Flex 13 and would each be turned to face the treadmill with an 

angle of around 37.5 degrees. A diagram of the camera setup from the top view is 

shown in Figure 10 with a labeled picture of the setup in Figure 11. The cameras 

also had a downward facing angle of 10 degrees to give the cameras a better view of 

the hind leg when it splays outward from the walking plane. The Flex 13, having the 

highest resolution and being in the center, allowed the capture of any marker data 

that might have been missed from the Flex 3s, which were at nearly opposing angles 

to maximize their ability to capture the position of each of the markers. All of the 

cameras were supported on standard camera tripods with the height being around 

54” high. Any loose cabling that went from the camera to the computer was 

wrapped around the tripod and secured with velcro straps to prevent accidents. The 

cables were then connected to a high-powered USB hub, which was then connected 

to the computer that ran the motion capturing software. The software procedure is 

discussed in Chapter 5.1.3. 
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Figure 10. A Diagram of the Camera Positions with respect to the treadmill when 
viewed from the top. Each of the camera’s field of view is indicated by each of the 
yellow lines, highlighting the overlapping nature of each camera view. Each camera 
is labeled and numbered according to the motion capture software. There is a space 
at the end of the table that allows the technician to manipulate the animal on and off 
the treadmill. 
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Figure 11. A labeled picture of the Camera layout when viewed from the end of the 
table. All three cameras are angled to the point where the animal is expected to walk 
on the treadmill (not shown in the picture). The Flex 3s being on the sides while the 
Flex 13 being in center. 
 

5.1.2 Software and tools. The software used for recording the motion of 

the animal on the treadmill was Motive (Natural Point Inc., Corvallis, OR) which was 

designed to work with the OptiTrack cameras. Using the cameras over USB made it 

essentially plug and play, but camera specific settings such as camera threshold and 

exposure settings, needed to be configured before calibration. Exposure was how 

much light reached the camera and the threshold was the minimum brightness that 

allowed a pixel to be recognized as a marker [60]. The specifics on how these setting 

were changed are discussed in Chapter 5.1.3. To properly calibrate the camera 

system, a calibration wand and three individual markers or calibration squares 
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were needed. The calibration wand was just three markers on a ridged arm spaced 

100mm between the first and second marker and 150mm between the second and 

third one. Since the wand was a set length with all three markers on the same plane, 

and with each camera stationary, distance and position were able to be calculated, 

as long as the wand was waved over the area where the motion capture was 

expected. The procedure for performing this is discussed in Chapter 5.1.3. When the 

calibration itself was completed, the software needed to know where the origin is 

with respect to the cameras, which was accomplished with a triangle or just three 

markers that formed a right angle on the same plane. The markers that were to be 

used on the animals themselves were simple 5mm facial markers with an adhesive 

backing. 

5.1.3 Motion capture procedure. Since the process behind motion 

capturing was software-based in Motive, a specific procedure was needed to reliably 

capture the animals’ repeated performances on the treadmill. The process was 

broken down into three different phases: setup, calibration, and capture.  

Setup involved placing the treadmill in the center or to the front of center of the 

table for easy access. The placement was marked with tape as the treadmill was 

moved during the calibration procedure. Then each of the cameras were attached to 

its respective tripod, connecting a USB cord to the computer running Motive. The 

camera’s placement is shown in Figure 10 and Figure 11. The excess cables were 

gathered together and secured so that the animal handlers did not trip over the 

cords. Once the cameras were plugged in and attached to the hub, it was necessary 

to fine-tune the position of the camera using the camera views in Motive. Once 
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Motive was open, the calibration pane was then selected, and the cameras 

positioned to focus on the animal as it walked on the treadmill, as highlighted in 

Figure 10. The exposure and threshold settings were then set up; they were 

dependent on the lighting in the room, and they helped ensure that only the 

reflective markers showed up in Motive without any false positives. For the most 

part, the settings were consistent as the lighting stayed constant, with slight 

variations from day to day. A table of the default values for exposure and threshold 

for each camera is shown in Table 3. Camera views in the calibration panes looked 

like the views in Figure 12. The camera was positioned while the cameras were in 

reference mode, while the proper exposure and threshold setting were set in 

tracking mode (default). Tracking or reference mode were triggered by clicking the 

camera icon (current mode: reference mode) or target icon (current mode: tracking 

mode) to change between the two modes. If necessary, a masking tool was used to 

identify an area as false, but it was used with caution, as markers were then 

prevented from showing up in that mask.  

 

Table 3 
 
Default Values for Threshold and Exposure for the Flex 13 and Flex 3 Camera for the 
normal lighting environment in the vivarium that produced the most ideal results 
between marker sensitivity and no false positive markers. 

 
Default Values 

 
Flex 3 Flex 13 

Threshold 
 

231 231 

Exposure 
 

5 55 
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Figure 12. A picture of the camera views as shown in the Motive Calibration Pane, in 
reference mode. All camera views are centered on the animal walking on the 

treadmill.  
 

Once all of the cameras were set up in the correct position and the proper values 

were set, the cameras were placed into tracking mode; the calibration was then able 

to begin, while making sure the wand size was set to small or 250mm. The treadmill 

first needed to be pushed aside so that there was room to wand the control volume. 

Calibration began by clicking the “start wanding” button. It starts to record and take 

samples once the cameras recognize the wand. For proper calibration, it was 

important that the wand be waved in the largest area possible while being 

concentrated on areas of greatest movement. Motive indicated when it had a 

sufficient number of samples to calibrate the system, but the more samples 

recorded, the better the calibration results were. Since our capture volume was on 
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the small side, we increased the number of samples slightly beyond Motive’s 

recommendations. From our experience and as part of the procedure, calibration 

only stopped when each camera recorded over 1,000 sample points. Anything lower 

resulted in less than ideal calibration calculation results.  

After the cameras were calibrated, the cameras could not be disturbed. If the 

cameras were accidentally bumped, the entire system had to be recalibrated. 

However, Motive made recalibration easier by offering a recalibration option. This 

option required fewer samples to recalibrate (in our case, 500) by utilizing its initial 

position as an initial condition. After calibration, the capture phase procedure for 

each animal began. Before the first animal was placed on the treadmill, a Marker Set 

was created in the Edit Pane. This allowed a marker set or marker label to be added 

to every take, as opposed to one at a time for every take. The markers were then 

labeled according to their respective placement on the animal: “Iliac,” “Hip,” ”Knee,” 

”Ankle,” and “Metatarsal.” Then the animal was then prepped to be placed on the 

treadmill. This involved shaving the animal’s left hind leg, marking the marker 

placement with a permanent marker, placing the animal in a vest to secure its upper 

arms, and placing the marker. Five markers were necessary because, at least three 

markers were needed in order to calculate an angle; then there needed to be two 

additional markers, from which an angle was not measured, for joint position. The 

additional markers were also used as anchor points for determining the joint angle 

distal or proximal to the marker. To make sure the position of the markers was as 

accurate as possible; they were placed on top of a bony structure, which reduced the 

amount of movement of the skin when the animal was walking. The iliac marker was 
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placed on the superior end of the iliac crest; the hip marker was on top of the 

greater trochanter; the knee marker was placed on the axis of rotation itself; the 

ankle marker was placed on top of the lateral malleolus; and the metatarsal marker 

was placed on the fifth metatarsal head (most lateral metatarsal). A diagram 

showing the marker positions with respect to the bones and joints themselves is 

shown in Figure 13. 

 

Figure 13. A diagram of the animal's left hind leg highlighting the bone locations 
where the markers were placed from above the skin showing the three angles that 
can be calculated from these five marker locations. From J. Pereira et al. [61] 
 

Once the markers were placed on the animal, they needed to be secured into the 

velcro plate on the BWS arm with straps. Once it was set, the animal was in a 

position illustrated in Figure 9. Motive was then set up to record the motion capture 

and the treadmill controls were started. Load cell data were logged. After 

completion of the motion capture, the project folder viewer was renamed to the 
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desired nomenclature. The nomenclature we used was: AnimalNumber-

WeekNumber-TakeNumber-Speed-%BWS-Notes. Animal Number was the number 

that the animal it was given, the week number was the time, which it was tested on 

(i.e. Baseline, week 4, and week 8), the speed was the speed of the treadmill, and the 

%BWS was the BWS of the animal that was tested on the treadmill. Any additional 

notes were added to the end of the take file name. This nomenclature was translated 

to later aspects of the project for files names. The take was then quickly examined in 

Motive to confirm it was suitable for future data analysis. If so, then the process was 

repeated with different treadmill speeds (7cm/s and 10 cm/s), different BWS (75%, 

65%, 55%) and different animals. 

5.2 Experimental Groups 

The different groups were necessary to evaluate efficacy of the PNIPAAM-g-

PEG implant with NT-3 and BDNF neurotrophins and its effect on improved gait 

after. To properly determine the treatments effectiveness, it needed to be compared 

to several aspects. Those aspects include how it compares to standard treatment of 

a normal and injured animal by itself, and how does it compare when supplemented 

with current treatment options. Five different factors need to be considered, each 

labeled: Baseline, Injury, BWSTT, Implant, and Combination. Each of the groups was 

trained to walk on the treadmill under passive assistance for one week before 

receiving an injury. The animals received a moderate 25 mm spinal cord contusion 

injury with an NYU device at the T9/T10 vertebra location. The group that received 

an implant received it two weeks after injury. A timeline of the different treatment 

options and when each of them were performed are shown in Figure 14. 
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Figure 14. Timeline of the Kinematics and Treatments in the study. All Baseline 
kinematic readings were captured a week before injury; the remaining kinematic 
readings were taken at Week 4 and 8. N values are the number of animals that were 
placed into each group but it does not reflect the number of animals that completed 
the kinematic study. The Baseline n is the number animals to complete a baseline 
reading. 
 

5.2.1 Baseline. The Baseline group was simply a group of normal animals 

that had been trained to walk on the treadmill with no treatments or injuries 

applied to it. Thus, this group was considered the best case scenario in terms of 

recovery. In our experiments, we set every animal with a baseline reading into a 

Baseline group; after they received an injury, they were then split up into the 

remaining four groups. 

5.2.2 Injury. The Injury group was a group of animals that had been trained 

to walk on the treadmill but received an SCI after getting a baseline reading on the 

treadmill. This effectively was the opposite of the Baseline in that it served as the 

worst case scenario in terms of recovery, as there was no treatment options 

performed.  

5.2.3 BWSTT. The BWSTT group was a group of animals that had been 

trained to walk on the treadmill, received a SCI, and, after the injury, that had 
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undergone rehabilitation using body weight support treadmill training or BWSTT 

for 8 weeks. For our study, this group was trained immediately after surgery for 

about 1000 steps a day, 5 days a week, for 8 weeks. 

5.2.4 Implant The Implant group was a group of animals that had been 

trained to walk on the treadmill, received a SCI, and, 2 weeks after the injury, and 

had a PNIPAAM-g-PEG scaffold with NT-3 and BDNF neurotrophins implanted at the 

injury site. No further rehabilitation was implemented.  

5.2.5 Combination. The Combination group was a group of animals that 

had been trained to walk on the treadmill, received a SCI, and 2 weeks after the 

Injury had a PNIPAAM-g-PEG scaffold with NT-3 and BDNF neurotrophins 

implanted at the injury site and received BWSTT for 8 weeks after implant surgery. 
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Chapter 6 

Data Analysis 

6.1 Motive Processing 

Once all of the motion capture data were recorded and completed, the 

motion capture data had to be preprocessed to prepare it and obtain the required 

data. It should be noted that not all of the takes met our classification of analyzable 

data. For a take to be considered analyzable, the take had to contain greater than 

three continuous strides on the treadmill with minimal take imperfections. 

Approximately 75% of the takes contained data that could be processed using 

MATLAB code (further details in Chapter 6.4), while the rest of the takes either 

underwent manual evaluation that involved counting the number of steps on the 

treadmill and describing how the animal walked, or could not receive either 

MATLAB or manual evaluation. A chart breaking down the number of takes is shown 

in Figure 15. 
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Figure 15. Chart of the total number of takes and whether they could be analyzed 
through MATLAB, manually or could not be analyzed due to too much error (TME), 
n = 432. 
 

6.1.1 Noise removal. Because of the nature of marker based motion 

capturing, there are some unavoidable errors in the motion capturing data, even 

with all of the proper precautions [62]. These include noisy, extra, missing, or 

merged markers that affect the results. This can happen for a variety of reasons, 

including but not limited to sudden changes in movement, dropped frames, 

occlusions from view of the camera, and random noise that appears in the motion 

capture data [32]. Motive itself has tools built-in that allowed us to properly handle 

these issues. These include tools to remove the ends of markers with gaps, to fill in 

gaps in markers with different interpolation methods, to smooth out markers with 

noise, and to swap and merge marker labels. While Motive does provide the tools 

available to fix gaps and erroneous markers, they could not be excessively used [62]. 

323 
74.77% 

100 
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9 
2.08% 
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Since each edit added unavoidable additional error, each take had to be investigated 

and evaluated as to whether it was suitable for analysis. Takes that were too noisy 

and or of poor quality, such as those containing lots of “jumping” and discontinuous 

markers, were not analyzed. Out of 332 motion capture takes that met the criteria 

for MATLAB or manual analyzing, nine takes (2.71%) were not used due to having 

excessive noise and jumpy markers. If the error correction tool were used for these 

nine takes, it would not be a realistic representation of the actual motion of the 

marker due to inability to differentiate noise from actual markers. 

There were several types of noise profiles in all different spots in the take. Some of 

the easiest noises to manage were with no movements present, as shown in Figure 

16. By looking at the entire take and surrounding frames, it could be concluded that 

there was no movement, especially considering the magnitude of the noise profile 

was the same for all of the spikes. It could also be classified as noise because both 

the y coordinate and z coordinate jumped position in similar ways, which would not 

be typical of normal gait movement. This noise profile was not exclusive to 

nonmoving markers, as seen in Figure 17 and could be handled as though there 

were no movement. Any small residual jumps were smoothed out using the smooth 

tool when there was not much change in marker movements. In terms of the 

settings for frequency, the more marker movement, the higher the frequencies were 

used (approximately 10 Hz compared to 6 Hz for no movement; with 8 Hz being the 

default). These frequencies were chosen based on the recommendation from the 

Motive documentation and experimentation from test takes. 
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Figure 16. Stages involved to manually removing noise from a marker that is not 
moving. Note the noise spikes are all increased at the same magnitude and can 

easily be removed by selecting and moving them all. This noise profile was seen 
multiple times even when there was movement present. 

 

 
Figure 17. A noise profile similar to that of the profile shown in Figure 16 except 
with marker movement. The left panel shows the marker path with noise and noise 
removed utilizing the same techniques as in Figure 16. After the noise was manually 
removed, the stance portion of the tracking (the linear region) was smoothed with a 
frequency of approximately 8 Hz. 
 

In some circumstances, there were instances where two markers are so close 

together, as with the metatarsal and ankle marker, that Motive either classified it as 

one marker, or confused the trajectories of one marker with the other. These 

examples can be seen in Figure 18. To help fix this error, normal noise-removing 

techniques could help properly identify where the marker belonged. However, this 

was not always enough. In these cases, the gap-filling tool was used to fill in missing 

marker data, based on extrapolations of position data to a reference marker. For 

example, if the ankle marker needed to have gaps filled, the metatarsal, and knee 

marker would be used as reference markers. If noise was not removed to a 
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reasonable level, a section of the take could be re-trajectorized, to recalculate where 

the marker position would be. Re-trajectorizing parts of the take undoes everything 

selected; thus it was done only when the noise-remove procedure was performed 

poorly or did not remove enough noise. Figure 19 shows how re-trajectorizing a 

take could affect noise profiles. 

 

 

Figure 18. Example of marker trajectories combining to erroneously create a marker 
(left). Existing markers jump to meet in the middle to effectively “merge together” 
(center). One trajectory of a marker combines with different components of another 
marker (right). 
 

 

Figure 19. Examples of Noise Profiles and how they change from before being 
trajectorized (left), trajectorizing once (middle) and a second time (right). This tool 
helped in differentiating noise versus actual marker movement based on movement 
changes after trajectorizing.  
 

After the take was processed and take noise removed for three to five consecutive 

strides, the desired stride range was then marked and the heel strike and toe off 

frame was labeled and recorded in a spreadsheet for additional processing. Once 
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these points were labeled, the take range was exported as a CSV file to prepare for 

MATLAB processing. 

6.2 Excel CSV Processing 

After a take was post-processed in Motive, it then needed to be exported as a 

CSV file, which was then processed in MATLAB. To help with that import process, 

only the desired range of the take was analyzed and exported from Motive to a CSV 

file. It was saved in the following nomenclature: AnimalNumber-WeekNumber-

Speed-%BWS. After the file was exported, it was then run through a custom Excel 

Visual Basic for Applications (VBA) script to clean up all of the unnecessary 

information from the CSV file and make it easier to import into MATLAB. The CSV 

file contained the raw coordinates of each marker for every frame, including the 

frame number and time data. This means that there were 17 columns of data for the 

take (3 columns per marker, 5 markers). The x, y, and z coordinates were based on 

the origin, defined at the commencement of the take, from the three markers placed 

on the treadmill. 

6.3 MATLAB 

MATLAB or Matrix Laboratory (MathWorks, Inc., Natick, MA) is mathematical 

computational software that was the basis of the data analysis of this project and 

was used to compute key values such as angles and ranges while also providing 

visual plots of the data. It is run off script files and functions that are in its own 

language. The data from the exported CSVs needed to be converted to a MAT file for 

the code that was used for this study to work. A MAT file is simply a data file that 
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makes it easier to read in MATLAB. The CSV files were imported and then saved as a 

MAT file so it could be easily referenced later for processing. 

6.4 Code 

The code that was used in for the MATLAB processing was a 570 line piece of 

code that was essentially designed to do three types of mathematical operations, 

and export three tables and seven plots. This code was designed to process five 

consecutive strides in a take. There were two derivatives of this code that process 

three and four strides in a take, and produced less data and plots. The three 

different calculations in all of the codes were dot product, range and excursion 

calculations, and mapping functions. The dot product was used to calculate the joint 

angle between three markers to produce hip, knee, and ankle angles. This 

calculation could be considered the most important calculation in the entire code. 

The range and excursion aspect was essentially just subtraction and finding the 

maximum and minimum joint angle per stride. The mapping function was an 

interpolation of the individual stride angles and samples so that there were 101 

readings. This process normalized all of the stride angles so that they were all the 

same length and could properly be compared to each other. The mapped data for 

this round of experiments were only for plotting, group comparison purposes, but 

exported in one of the three tables so that future data analysis could be performed. 

Although the code could do all of the calculations, the entry of the data (e.g., telling it 

which take analysis and when the strides started) had to be manually imported. The 

process of importing the necessary data, was simply typing in a few strings, such as 

the MAT file name, and the elements of the MAT file name, such as the animal 
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number, week number, speed, %BWS, and the group number. Additionally, it 

involved inputting the frame numbers of heel location, as that was how the code 

broke up the individual strides. This input section of the code is shown in Figure 20. 

The individual heel strikes for each take were recorded in a spreadsheet; it was also 

indicated whether that take was analyzed or not. That sheet can be found in 

Appendix B: Stride Table 

 

 

Figure 20. The first few line of the MATLAB code which required user input. The 
code required the input of the MAT file name, properties of take, and the heel strike 
frame number of the desired take. In this case it was Animal 56, Week 4, 10 cm/s, 
75% BWS, and it was in BWSTT group. The heel strikes were present in frame 
numbers 452, 565, 709, 851 in addition to the first and last frame of the take. 
 

The breakdown of the code was as follows: 

 Import the data from the pre-created MAT file 

 Split the take into individual strides 
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 Perform the Dot Product on the Coordinates of each marker at each frame to 

produce joint angles throughout the entire take 

 Calculate the angle ranges and joint excursions for each joint and stride 

 Map each stride joint angle to 101 points 

 Plot stick figure plots for each stride 

 Plot joint angles plot throughout the entire take and a mapped stride plot. 

 Export mapped stride data, take average data, and individual stride data in 

CSV files. 

The main MATLAB code can be found in Appendix C: Main MATLAB Code. 

6.4.1 Angles and excursions. The main aspect of this code was the ability 

to calculate the joint angles from the raw position data. This was made possible 

through the use of the dot product as shown in equation 1 below 

 𝒂 ⋅ 𝒃 = ‖𝒂‖‖𝒃‖ cos 𝜃 = 𝒂𝑥𝒃𝑥 + 𝒂𝑦𝒃𝑦 + 𝒂𝑧𝒃𝑧 (1) 

with a and b being vectors, ‖a‖ being the magnitude of vector a, and x, y, and z being 

the individual coordinates of vectors a and b. Rearranging the vector and magnitude 

terms in term of a vector between two points we arrived at: 

 

𝒂𝑥 = 𝑥2 − 𝑥1  

𝒂𝑦 = 𝑦2 − 𝑦1 

𝒂𝑧 = 𝑧2 − 𝑧1 

(2) 

 ‖𝒂‖ = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 (3) 

with x, y, and z being the individual coordinates of points 1 and 2. Additionally, 

equation 4 was rearranged to solve for θ as follows: 
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 𝜃 =  cos−1
𝒂𝑥𝒃𝑥 + 𝒂𝑦𝒃𝑦 + 𝒂𝑧𝒃𝑧

‖𝒂‖‖𝒃‖
 (4) 

Since the raw data that were exported from Motive were individual points in a 

Cartesian coordinate system, those points could be converted to vectors, which then 

could be converted to angles. 

In terms of ranges and excursions, they are simply a calculation between the largest 

and smallest angle and determined the excursion of each joint for each stride, and 

the ranges were just actual maximum and minimum angles.  

6.5 Plots and Data 

The MATLAB code, as highlighted in Chapter 6.4, was responsible for 

processing the kinematic data that were outputted from Motive. Three types of plots 

were generated: stick figure plots, angle plots of the entire take for all three joints, 

mapped angle plots for each of the joints, and averaged mapped angle plots per 

group, with an average angle chart for each joint based on the strides analyzed for 

that take. Plots for a selected animal in each group are shown in Figure 21 thru 

Figure 23. Plots were additionally calculated outside of MATLAB that used some of 

the exported data, such as the average ranges and stride lengths. There were also 

plots of the number of steps that were not reliant on the use of MATLAB but rather 

on just the video and Motive takes. Some takes were only analyzed in Excel due to 

the fact that they did not meet the minimum criteria for evaluation in MATLAB but 

still held relevant data that allowed us to gain more insight as to why they could not 

be analyzed in that manner. The specific takes that were analyzed in MATLAB, Excel, 

both or not at all can be found in the stride table in Appendix B: Stride Table. The 
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use of plots in this chapter mostly highlight the use the 10cm/s treadmill speed and 

75% BWS, with the exception of the number of steps taken plots. The reason for this 

was because this speed and BWS combinations had a reasonable number of animals 

in all five groups that walked at Week 4 and Week 8 to allow for statistics to be run. 

The rest of the speed and BWS combinations, at least one group in Week 4 or Week 

8, there were not enough animals that walked to allow statistics to be run. The plots 

that were generated for all speed and BWS combinations and that weren’t utilized in 

the number of step plots can be found in Appendix D: Plots from Remaining Speed 

and BWS Combinations. 

6.5.1 Stick figure plots. Stick figure plots are plots that show the trajectory 

of an animal’s stride in 2D space. This provides a good visualization of how a specific 

animal is performing as it creates a visual of each joint position at every frame 

throughout the stride. Strides in this case started at the heel strike and the position 

stick started as a cool color. As the animal moved through the stride, the different 

sticks become a “warmer” color, and provided an indication as to stick location 

during stride. Several stick figure plots for a different animal in each group are 

shown in Figure 21. Since the stick figures were produced from animals that had 

been analyzed and in the Injury group, there was no one animal that was analyzed 

during Week 4 and Week 8 at 10 cm/s. As a result, two different animals from the 

same group were used.  
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Figure 21. Stick Figure Plots for one animal in each group that walked at 10 cm/s 
with 75% BWS. The Injury group however had no animal, with analyzable takes that 
walked at both Week 4 (Left Plots) and Week 8 (Right Plots). Animals Used: 56 
(Baseline), 49 and 59 (Injury), 52 (BWSTT), 54 (Implant), 48 (Combination). 
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6.5.2 Full angle plots. The full angle plots were simply a plot angle of all 

three joints throughout the entire take. The X-axis in these plots was frames, which 

run at a frequency of 100 Hz, so that 100 frames were one second in real time. These 

plots were useful in providing a better and more quantifiable visualization of the 

joint movements for the entire take for a specific animal. Just as with the stick figure 

plots, these full angle plots were generated only from animals that were analyzed in 

MATLAB. The animal numbers from stick figure plots in Figure 21 were the same as 

the Full Angle plots in Figure 22. 
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Figure 22. Full Angle Plots for one animal in each group that walked at 10 cm/s with 
75% BWS. The Injury group however had no animal, with analyzable takes that 
walked at both Week 4 (Left Plots) and Week 8 (Right Plots). Animals Used: 56 
(Baseline), 49 and 59 (Injury), 52 (BWSTT), 54 (Implant), 48 (Combination). 
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6.5.3 Mapped angle plots. Mapped angle plots were like the full angle plots 

in that the only data used were the joint angles. However, mapped angle plots split 

the joint angles for each stride, and then the data were resampled so that there were 

101 points for each stride. This allowed the angle data to be more easily compared 

with another animal as they all had same number of data points per stride. Data for 

these mapped data plots was exported from the code as well so that future analysis 

could be performed. In addition to splitting and remapping, an average angle was 

taken for each of those remapped angles to create an average angle profile per 

stride. The black lines in the plot indicated the individual stride, whereas the blue 

lines indicated the average stride. Just as with the stick figure and full angle plots, 

these plots were generated only from animals that had been analyzed in MATLAB. 

The animal numbers from plots in Figure 21 and Figure 22 were the same as the 

mapped angle plots in Figure 23.  

Since the dataset for these plots allow for the comparison of the stride angles of 

different animals within the same group to be compared together, additional plots 

that provide the averaged mapped angle for all three joints for every animal in each 

of the five groups for Week 4 and Week 8 are shown in Figure 24 and Figure 25, 

respectively. These plots provide a picture of average joint angles throughout the 

gait cycle of an average animal in a specific group and help to show the changes in 

which part of the gait cycle were changed with the different treatments. The 

MATLAB code that was used to generate these plots is a different code that 

generated the plots in Figure 23 but is dependent on it. This code can be found in 

Appendix E: Average Mapped Plots MATLAB Code. 
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Figure 23. Mapped Angle plots for one animal in each group that walked at 10 cm/s 
with 75% BWS. The Injury group however had no animal, with analyzable takes that 
walked at both Week 4 (Left Plots) and Week 8 (Right Plots). The black dotted line 
represents the individual strides while the blue lines represent the average stride. 
Animals Used: 56 (Baseline), 49 and 59 (Injury), 52 (BWSTT), 54 (Implant), 48 
(Combination). 
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Figure 24. Average Mapped Angle Plots for all the Hip (top), Knee (middle), and 
Ankle (bottom) for all five groups for Week 4 for animals that walked at 10 cm/s 
and 75% BWS. 
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Figure 25. Average Mapped Angle Plots for all the Hip (top), Knee (middle), and 
Ankle (bottom) for all five groups for Week 8 for animals that walked at 10 cm/s 
and 75% BWS. 
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6.5.4 Excel plots. While the majority of data analysis was performed in 

MATLAB, some of the final processing was done in Microsoft Excel (Microsoft Inc., 

Redmond, WA). These plots were either generated from exported CSVs from 

MATLAB, which was then put into a pivot table to plot the results or was manually 

entered into Excel and then put into a pivot table. The data that were additionally 

processed from MATLAB in Excel were average stride lengths and heights for each 

marker, and angles for each joint. Data that were manually entered into Excel 

without any MATLAB processing were the duration of swing, stance phases, and the 

number steps walked in a take. 

6.5.4.1 Stride distance plots. The stride length and height plots were 

produced from data that MATLAB calculated and exported to CSV files. The data for 

each take include the average stride length or stride height for each stride. It was 

measured from the ankle marker and involved subtracting the distance from the toe 

off to the heel strike. The average stride length over the course of time for each 

group is shown in Figure 26, and the average stride height is shown in Figure 27. 
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Figure 26. Line plot of the average stride length for all 5 groups from Baseline to 
Week 4 to Week 8 at 10 cm/s and 75% BWS. Table shows the number animals that 
were calculated for each group and each week and was dependent on how many 
animals had MATLAB analyzable takes. The error bars are one standard deviation. 

 
Figure 27. Line plot of the average stride height for all 5 groups from Baseline to 
Week 4 to Week 8 at 10 cm/s and 75% BWS. Table shows the number animals that 
were calculated for each group and each week and was dependent on how many 
animals had MATLAB analyzable takes. The error bars are one standard deviation. 

Baseline Week 4 Week 8

Baseline 4.42337 4.42337 4.42337

Injury 4.42337 4.618528889 4.893209333

BWSTT 4.42337 4.5314 5.810263333

Implant 4.42337 4.144113333 5.204746667

Combination 4.42337 4.376533333 5.11652

0

1

2

3

4

5

6

7

8

S
tr

id
e

 L
e

n
g

th
 (

cm
) 

Baseline

Injury

BWSTT

Implant

Combination

n = 10 

n = 6 

n = 2 

n = 6 

n = 6 

n = 10 

n = 5 

n = 6 

n = 4 

n = 11 

n = 10 

n = 10 

n = 10 

n = 10 

n = 10 

Baseline Week 4 Week 8

Baseline 2.396874 2.396874 2.396874

Injury 2.396874 1.960623333 1.980989333

BWSTT 2.396874 2.10892 2.22132

Implant 2.396874 1.590657778 1.936681667

Combination 2.396874 1.775106667 2.09198

0

0.5

1

1.5

2

2.5

3

3.5

S
tr

id
e

 H
e

ig
h

t 
(c

m
) 

Baseline

Injury

BWSTT

Implant

Combination

n = 10 

n = 6 

n = 2 

n = 6 

n = 6 

n = 10 

n = 5 

n = 6 

n = 4 

n = 11 

n = 10 

n = 10 

n = 10 

n = 10 

n = 10 



www.manaraa.com

 

62 
 

6.5.4.2 Joint angle plots. The joint angle plots for the hip, knee, and ankle 

were produced from data that MATLAB calculated and exported to CSV files. The 

data for each take are the average joint excursion for each stride and was measured 

for each of the three joints subtracting the max joint angle from the minimum joint 

angle for each group. The plots are based over the course of time from Baseline to 

Week 4 to Week 8. The average hip, knee, and ankle angle plots are found in Figure 

28, Figure 29, and Figure 30, respectively. 

 

 

Figure 28. Line plot of the average hip angle for all 5 groups from Baseline to Week 4 
to Week 8 at 10 cm/s and 75% BWS. Table shows the number animals that were 
calculated for each group and each week and was dependent on how many animals 
had MATLAB analyzable takes. The error bars are one standard deviation. 

Baseline Week 4 Week 8

Baseline 21.16581168 21.16581168 21.16581168

Injury 21.16581168 18.25821366 21.98340882

BWSTT 21.16581168 24.16689586 22.01061335

Implant 21.16581168 20.53277253 24.51582166

Combination 21.16581168 23.2125524 20.51669603
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Figure 29. Line plot of the average knee angle for all 5 groups from Baseline to Week 
4 to Week 8 at 10 cm/s and 75% BWS. Table shows the number animals that were 
calculated for each group and each week and was dependent on how many animals 
had MATLAB analyzable takes. The error bars are one standard deviation. 

 
Figure 30. Line plot of the average ankle angle for all 5 groups from Baseline to 
Week 4 to Week 8 at 10 cm/s and 75% BWS. Table shows the number animals that 
were calculated for each group and each week and was dependent on how many 
animals had MATLAB analyzable takes. The error bars are one standard deviation. 

Baseline Week 4 Week 8

Baseline 36.64570614 36.64570614 36.64570614

Injury 36.64570614 34.31421276 39.66519118

BWSTT 36.64570614 30.18979138 43.93511225

Implant 36.64570614 26.11495095 38.66683396

Combination 36.64570614 31.49714325 38.70332654
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In addition to line plots these of the joint angles, bar plots were also created to show 

a specific week with all of the joints and groups. Another difference between the bar 

and line plots is that this produces an average angle excursion throughout the entire 

take instead of an average between the individual strides. This helps in providing an 

overall picture with the joint excursion throughout the entire take without looking 

at it from an individual stride perspective. These bar joint angle plots for Week 4 

and Week 8 are shown in Figure 31 and Figure 32, respectively.  

 

 
Figure 31. Total angle excursions bar plot for Week 4 animals at 10 cm/s at 75% 
BWS. Baseline n = 10, Injury n = 6, BWSTT n = 2, Implant n = 6, Combination n = 6. 
Error bars represent one standard deviation. 
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Figure 32. Total angle excursions bar plot for Week 8 animals at 10 cm/s and 75% 
BWS. Baseline n = 10, Injury n = 5, BWSTT n = 6, Implant n = 5, Combination n = 11. 
Error bars represent one standard deviation. 
 

6.5.4.3 Duration plots. The duration plots for the swing and stance were 

produced from data that were manually evaluated by looking at the Motive takes to 

determine when the swing starts from toe off to heel strike and when stance starts 

from heel strike to toe off. The data for each take are the average duration of the 

swing or stance for each group. The plots are based over the course of time from 

Baseline to Week 4 to Week 8. The swing and stance plots are shown in Figure 33 
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Figure 33. Average duration of an animal’s swing for all 5 groups from Baseline to 
Week 4 to Week 8 at 10 cm/s and 75% BWS. Error bars represent one standard 
deviation. 

 
Figure 34. Average duration of an animal’s stance for all 5 groups from Baseline to 
Week 4 to Week 8 at 10 cm/s and 75% BWS. Error bars represent one standard 
deviation. 
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v

g
 L

e
n

g
th

 o
f 

S
w

in
g

 (
se

c)
 

Baseline

Injury

BWSTT

Implant

Combination

n = 10 

n = 6 

n = 2 

n = 6 

n = 6 

n = 10 

n = 5 

n = 6 

n = 4 

n = 11 

n = 10 

n = 10 

n = 10 

n = 10 

n = 10 

Baseline Week 4 Week 8

Baseline 0.855 0.855 0.855

Injury 0.855 1.485 1.739333333

BWSTT 0.855 1.246 1.279

Implant 0.855 1.139666667 1.281

Combination 0.855 1.220333333 1.370363636

0

0.5

1

1.5

2

2.5

A
v

g
 L

e
n

g
th

 o
f 

S
ta

n
ce

 (
se

c)
 

Baseline

Injury

BWSTT

Implant

Combination

n = 10 

n = 6 

n = 2 

n = 6 

n = 6 

n = 10 

n = 5 

n = 6 

n = 4 

n = 11 

n = 10 

n = 10 

n = 10 

n = 10 

n = 10 



www.manaraa.com

 

67 
 

6.5.4.4 Number of steps plots. The number of step plots for the step counts 

were produced from data that were manually evaluated from looking at the Motive 

takes to determine the number of steps that an animal walked on a treadmill. These 

data were not dependent on MATLAB processing and included animals that just 

walked on the treadmill to help fill in the gaps that the MATLAB evaluation was not 

able to identify. The data for each take are simply the number of steps that the 

animal successfully performed on the treadmill throughout the entire take. The line 

plot version of the step count averages over the course of time from Baseline to 

Week 4 to Week 8 for both treadmill speeds, and all three BWS are shown in Figure 

35 thru Figure 40. The step counts are also presented in a histogram form for Week 

4 and Week 8 are shown in Figure 41 and Figure 42, respectively. 

 

 
Figure 35. A line plots showing the average number of steps for all 5 groups from 
Baseline to Week 4 to Week 8 at 7 cm/s and 75% BWS. Error bars represent one 
standard deviation.  
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Figure 36. A line plots showing the average number of steps for all 5 groups from 
Baseline to Week 4 to Week 8 at 10 cm/s and 75% BWS. Error bars represent one 
standard deviation. 

 
Figure 37. A line plots showing the average number of steps for all 5 groups from 
Baseline to Week 4 to Week 8 at 7 cm/s and 65% BWS. Error bars represent one 
standard deviation. 
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Figure 38. A line plots showing the average number of steps for all 5 groups from 
Baseline to Week 4 to Week 8 at 10 cm/s and 65% BWS. Error bars represent one 
standard deviation. 

 
Figure 39. A line plots showing the average number of steps for all 5 groups from 
Baseline to Week 4 to Week 8 at 7 cm/s and 55% BWS. Error bars represent one 
standard deviation. 
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Figure 40. A line plots showing the average number of steps for all 5 groups from 
Baseline to Week 4 to Week 8 at 10 cm/s and 55% BWS. Error bars represent one 
standard deviation. 

 
Figure 41. Histogram Plot of the Number of Steps Performed by Every Animal during 
Week 4 at 10 cm/s at 75% BWS. 
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Figure 42. Histogram Plot of the Number of Steps Performed by Every Animal during 
Week 8 at 10 cm/s at 75% BWS. 
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Chapter 7 

Discussion 

7.1 Distances and Height Ranges 

As previously discussed, the distances and height ranges were obtained from 

the processing of the motion capture data in MATLAB and in Excel. The ranges and 

distances of the animals from each of the five groups are shown in Figure 26 and 

Figure 27 measured from the ankle at a speed of 10 cm/s and a BWS of 75%. A 

higher value in either distances or height equates to greater range of motion. For 

our Baseline group there was an average stride distance of 4.423 cm and a standard 

deviation of 0.82 cm, with an average height of 2.397 cm and a standard deviation of 

0.582 cm. All groups had increased stride distances by 0.47 cm at the end of 8 weeks 

but all groups had a decrease in stride height by 0.416 cm. The Injury group 

however experienced the second greatest variation in performance in stride 

distance length and height behind the BWSTT group. The Injury group had a 25% 

higher standard deviation in distance and height for Week 8 than the average 

standard deviation of every other group for week 8. There was a lack of animals that 

were able to perform on the treadmill for the BWSTT group for week 4 where only 

two animals walked, which explains the higher variation in the distances. A table of 

the ranges and standard deviations, which were used to create Figure 26 and Figure 

27, are shown in Table 4. Overall, compared to the Baseline, the distance between all 

groups tended to increase as time went on with BWSTT having the greatest 

improvement in stride length. Other data sets such as the number of steps 
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(discussed in Chapter 7.3) highlight how, in a more reliable manner, how that group 

performed.  

 
Table 4 
 
Table of the Stride Lengths and Heights as shown in Figure 26 and Figure 27 with the 
standard deviations. Treadmill speed of 10 cm/s 
 

Stride 
Length 

Baseline Injury BWSTT Implant Combination 
x̅ σ x̅ σ x̅ σ x̅ σ x̅ σ 

Baseline 4.423 0.820 4.423 0.820 4.423 0.820 4.423 0.820 4.423 0.820 

Week 4 4.423 0.820 4.619 0.772 4.531 1.785 4.144 0.694 4.377 0.951 

Week 8 4.423 0.820 4.893 1.556 5.810 1.761 5.205 1.174 5.117 0.989 

Stride 
Height 

Baseline Injury BWSTT Implant Combination 
x̅ σ x̅ σ x̅ σ x̅ σ x̅ σ 

Baseline 2.397 0.582 2.397 0.582 2.397 0.582 2.397 0.582 2.397 0.582 

Week 4 2.397 0.582 1.961 0.310 2.109 0.166 1.591 0.503 1.775 0.150 

Week 8 2.397 0.582 1.981 0.521 2.221 0.252 1.937 0.288 2.092 0.456 

 

 
After 8 weeks of training the BWSTT, Implant, and Combination groups, the average 

strides became more extended with lower heights achieved during the swing phase 

compared to the Baseline. For these three groups, the magnitude of increase for the 

length was greater than the decrease in height during the swing phase. In addition, 

for the stride height, the data highlight that the BWSTT group had a faster recovery 

compared to the Injury and Implant groups. The Combination group was better than 

the Implant group and Injury group alone but a bit less than the BWSTT group. This 

indicates that there was an improvement in the range of motion, however combined 

with the variances between the different groups, it hard to tell whether the 

treatment stood out from one another.  
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Compared to previous literature, the trend of increasing stride length over a BWS 

training regimen is seen in prior literature such as the Alluin et al. study from 2011. 

In this study, there was an increase in step length partially in the Injury and BWSTT 

group thru with recovery after six weeks for their study. The trend in the time 

between Week 4 and Week 8 is similar to Singh et al. from 2011 where there was a 

faster increase in step length in BWSTT group compared to the injured group. In 

regards to the step height trends, they are very similar to both the Alluin et al. from 

2015 and Singh et al. from 2011. In our study and in both Alluin’s and Singh’s 

studies, there was a decrease in step height after injury with some recovery in step 

heights being closer to the Baseline by Week 8. The trained groups improved at a 

faster rate compared to the Injury group [5], [40], [63].  

7.2 Angles Ranges and Excursions 

From the motion capture data and processing of the data in MATLAB and in 

Excel, the Angle ranges and excursions of the animals from each of the five groups 

for each joint in week 4 and week 8 are shown in Figure 31 and Figure 32, 

respectively. The same data in different line plots over time for each joint are found 

in Figure 28 thru Figure 30. Similar to the stride length and heights, the higher value 

in angles for the ankle, knee, and hip equates to greater range of motion of the joint. 

However in the case of the ankle joint for all the groups beside the Baseline, the 

range increased after injury and had little variations to week 8 with a slight increase 

to 108° between the four groups. For the other joints, there was a decrease in range 

of motion in week 4 for both the hip and knee compared to the Baseline. After week 

8, however range of motion seemed to improve for both the hip and knee for all 
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groups. This trend indicates that the animals are more likely to drag their foot on 

the treadmill and with more training; the drag is more likely to decrease with the 

increase in hip and knee angles. The knee joint however is a joint that can be 

problematic to properly motion capture due to the increased amount of movable 

skin on top of the joint itself. By week 8, the three different treatment groups are all 

seeing improvement in angular motion compared to the Injury group but the 

changes between the groups themselves are relatively small. A table of the ranges 

and standard deviations, that were used to create Figure 28 thru Figure 32, are 

shown in Table 5.  

A review of our data finds similarities in trends in several studies regarding an 

Ankle, Knee and Hip excursion in our trained groups verses our untrained groups. 

These similarities were found in Alluin et al. 2011, and Goldshmit et al. 2008 In both 

Alluin’s and Goldshmit’s studies, there was an increased range in the ankle angle 

after injury with ranges starting to plateau after a few weeks. In terms of the Knee 

joint, in the Alluin study and our data, the injured group compared to the trained 

group exhibit similar trends. The injured and trained groups have reduced ranges 

after injury, which slowly increased as training progressed. For the hip angle, our 

data follows aspects of both Alluin’s and Goldshmit’s studies. We had a decrease in 

hip ranges for our injured groups as in Goldshmit’s study and increased hip angles 

for our trained groups like the Alluin study. By the end of the training period after 

eight weeks, our trained groups have less range (but closer to Baseline) compared 

to the untrained groups, which is similar to both Alluin and Goldshmit studies [40], 

[64]. 



www.manaraa.com

 

76 
 

Table 5 
 
Table of the Joint Angle Ranges of motion in degrees as shown in Figure 28 thru Figure 
32 with the standard deviations. Treadmill speed of 10 cm/s 
 

Ankle 
Baseline Injury BWSTT Implant Combination 
x̅ σ x̅ σ x̅ σ x̅ σ x̅ σ 

Baseline 80.15 27.21 80.15 27.21 80.15 27.21 80.15 27.21 80.15 27.21 

Week 4 80.15 27.21 99.06 24.04 105.8 14.40 84.57 10.48 103.0 28.03 

Week 8 80.15 27.21 111.5 4.720 107.6 14.47 105.4 36.17 110.8 7.202 

Knee 
Baseline Injury BWSTT Implant Combination 
x̅ σ x̅ σ x̅ σ x̅ σ x̅ σ 

Baseline 36.65 10.39 36.65 10.39 36.65 10.39 36.65 10.39 36.65 10.39 

Week 4 36.65 10.39 34.31 9.13 30.19 10.41 26.11 9.97 31.5 10.29 

Week 8 36.65 10.39 39.67 10.85 43.94 12.58 38.67 9.04 38.7 8.4 

Hip 
Baseline Injury BWSTT Implant Combination 
x̅ σ x̅ σ x̅ σ x̅ σ x̅ σ 

Baseline 21.17 5.54 21.17 5.54 21.17 5.54 21.17 5.54 21.17 5.54 

Week 4 21.17 5.54 18.26 6.62 24.17 7.54 20.53 6.08 23.21 4.41 

Week 8 21.17 5.54 21.98 10.85 22.01 4.63 24.52 2.06 20.52 8.96 

 
 

In addition to the data range of motion data, it was observed from the mapped joint 

angle plots exported from MATLAB that the Combination group and BWSTT groups 

are more consistent in their strides in terms of joint angles. As shown in Figure 21 

through Figure 23 the joint angles and the points at where they transition from 

stance to swing, is more defined and consistent between strides. This was 

determined due to the compactness of the black dotted line in Figure 23. While the 

joint angles for all of the groups do improve from week 4 to week 8 compared to the 

Injury group, the variances between the different groups are still close enough. 

Therefore, it is hard to tell whether the different treatments stood out from one 

another.  
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This was further supplemented by the averaged mapped angles plots shown in 

Figure 24 and Figure 25 for week 4 and week 8, respectively. These plots differ from 

Figure 23 because they show the average for the entire group’s mapped joint angles 

instead of being from just one animal in each group. These plots highlight that there 

is a difference between the trained groups and non-trained group in terms of how 

they walk. The trained groups are more able to make more rapid changes in their 

joint angles and tended to deviate closer to the Baseline faster than the non-trained 

group if the non-trained groups changed at all. When compared to each other, there 

were little differences between the BWSTT and Combo groups in terms of joint 

angle profiles, changes in angles with an increase in the gait cycle, and similar 

recovery patterns toward the Baseline. Additionally, the Implant group showed 

some form of joint motion recovery more than the Injury group on its own by week 

8, but not as significant between that and the BWSTT group. 

7.3 Number of Steps and Duration of Swing Stance Phases  

From the motion capture data and processing of the data in MATLAB in 

Excel, the duration of the swing and stance phase for the animals from each of the 

five groups for each joint in week 4 and week 8 are shown in Figure 33 and Figure 

34, respectively. Additionally data from the number of steps the animals walked, 

whether or not they met the threshold for MATLAB analysis or not, are shown in 

Figure 35 thru Figure 42. The higher the number of steps indicates a specific 

animal’s ability to walk. They were classified into each of their individual groups and 

provided more insight into the animals that could not be analyzed thru the MATLAB 

code. On average, for 10 cm/s and 75% BWS, a Baseline animal was able to walk 
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10.7 steps with a standard deviation of 6.6. The Injury group had an average of 6.3 

steps with a standard deviation of 3.9 for Week 4. On week 8, this average was 3.8 

steps with a standard deviation of 3.77. For all other speeds and BWS, the injury and 

Implant group had a steady decrease in the average number of steps taken. The 

BWSTT and Combination groups had decrease in the number of step until Week 4 

and then either steady or increased average number of steps at Week 8. There were 

some cases, in some of the BWS and speeds, where the Combination group had an 

average step count higher than the Baseline and in other cases where the Injury 

group had an average step count higher than the BWSTT group. In both of those 

cases the variability between the different animals in the same group as relatively 

high compared to each other. These results help explain why there were few injury 

animals able to be analyzed thru MATLAB or able to be motion captured. All groups 

had fewer steps than the Baseline, but there were increases in the number of steps 

being performed for the BWSTT group. This was followed by the Combination 

group, with the Implant group having a smaller average than the injury but with a 

similarly high deviation. A data table that was used to plot the data in Figure 36 is 

shown in Table 6. The data in Figure 41 and Figure 42 are from the same data set as 

Figure 36 but in histogram form. This shows the number of animals that performed 

a certain number of steps per group. This data indicated that by itself, the 

biomaterial implant is not as effective as BWSTT alone and is more similar to the 

Injury group. However, when combined with BWSTT, it can show slight 

improvement in its number of steps. 
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Table 6 
 
Table of the Number of steps walked for each group of animal as shown in Figure 36 
and Figure 41 thru Figure 42 with the standard deviations. Treadmill speed of 10 cm/s 
and a BWS of 75% was used for this data set. 
 

Avg. 
Steps 

Baseline Injury BWSTT Implant Combination 
x̅ σ x̅ σ x̅ σ x̅ σ x̅ σ 

Baseline 10.73 6.66 10.73 6.66 10.73 6.66 10.73 6.66 10.73 6.66 
Week 4 10.73 6.66 6.29 3.90 2.75 1.50 4.11 4.20 7.33 4.21 
Week 8 10.73 6.66 3.27 3.77 5.43 5.03 2.55 3.93 7.50 2.71 

 

 
For the Swing Stance Durations, it is ideal when the differences between the 

measured duration and the Baseline duration are minimal. This data however, 

unlike the step counts, were only available from the animals that were able to walk 

on the treadmill. For the Injury group by Week 8, the swing times increased nearly 

200% and for nearly 100% the stance time. This further supplements the Injury 

group’s inability to walk on the treadmill from the number of steps data. In the 

groups that received treatment after SCI, there was an improvement in duration for 

swing and stance and these were close to the Baseline reading of 0.174 seconds. The 

standard deviation was 0.073 seconds for swing phase and 0.855 seconds with a 

standard deviation of 0.192 seconds. This compared to the Injury group in Week 8, 

which was 0.505 seconds with a standard deviation of 0.419 for the swing phase 

and 1.739 seconds with a standard deviation of 0.46 seconds for the stance phase. 

The BWSTT, Implant and Combination time for swing and stance were similar from 

one another for both Week 4 and Week 8 and did not show a significant different 

between the therapies. Compared to existing studies, our data draws similarities to 

both of the Alluin et al. studies from 2011 and 2015 where there was a net increase 
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in swing and stance durations throughout the course of training. There were similar 

circumstances where our trained animals had more noticeable longer steps, which 

resulted in more time for each of the swing and stance phases. The numerical data 

that were used to generate the plots in Figure 33 and Figure 34 are shown in Table 7 

[40], [63]. 

 

Table 7 
 
Table of the times of the swing and stance phase for each group of animal as shown in 
Figure 33 and Figure 34 with the standard deviations. Treadmill speed of 10 cm/s and 
BWS of 75% was used for this data set. 
 

Swing 
Baseline Injury BWSTT Implant Combination 
x̅ σ x̅ σ x̅ σ x̅ σ x̅ σ 

Baseline 0.174 0.073 0.174 0.073 0.174 0.073 0.174 0.073 0.174 0.073 

Week 4 0.174 0.073 0.232 0.048 0.178 0.008 0.225 0.101 0.238 0.054 

Week 8 0.174 0.073 0.505 0.419 0.290 0.135 0.369 0.136 0.279 0.128 

Stance 
Baseline Injury BWSTT Implant Combination 
x̅ σ x̅ σ x̅ σ x̅ σ x̅ σ 

Baseline 0.855 0.192 0.855 0.192 0.855 0.192 0.855 0.192 0.855 0.192 

Week 4 0.855 0.192 1.485 0.680 1.246 0.076 1.140 0.309 1.220 0.409 

Week 8 0.855 0.192 1.739 0.460 1.279 0.411 1.281 0.262 1.370 0.253 

 
 

7.4 Limitations of Our Study 

While the attempts to mitigate any limitations in our study were taken, there 

were still some issues that remained. As discussed in Chapters 5.1 and 6.1.1, there 

are issues with noise present in the motion capture system. In our system, our three 

camera setup, while suitable increased the occurrence of noise. This increase in 

noise made it harder to completely analyze incomplete motion capture take. Our 

setup would have benefited from the use of an additional camera to help curbed the 
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amount of noise present and with the addition of at least two more camera would 

have help with more accurate reference camera data as well.  

Additionally with our animals themselves, their ability to walk our treadmill 

was also a limiting factor in our study. There was only one data set of animals (10 

cm/s and 75% BWS) where at least 4 animals from each group were able walk on 

the treadmill for Week 4 and Week 8 of the motion capture session. This only 

allowed us to run a statistical analysis of the one set where there was only 

significance (p<0.05) in the number of steps taken for the Combination and Injury 

group compared to Baseline. While the ability to coerce an animal to walk on a 

treadmill can be issue, future studies should take this factor into account when 

designing similar experiments to allow for extra animals to be utilized.  

7.5 Future Studies 

All of these data sets indicate that this biomaterial scaffold implant made 

with PNIPAAM-g-PEG with NT-3 and BDNF neurotrophins has a positive impact on 

the recovery of kinematics for animals that have had a partial spinal cord injury. 

From this study, the effects of this specific treatment from a kinematic perspective 

by itself, is not as effective as BWSTT. However, it can potentially possess synergetic 

benefits when used with BWSTT. The effect of this synergic behavior for this 

particular scaffold combination is not conclusive from our data and needs to be 

determined by future research.  

Studies that investigate this phenomenon should consider an advanced motion 

capture system, as the movements are smaller compared to normal motion capture 

systems. Regular high-speed cameras should also be used. Additionally, behaviors 
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involving the use of force plates would allow more insight to total effect of 

kinematics with the use of these treatments. Along with identifying, researching, 

and developing new biomaterials to develop the scaffolds, testing the use of 

different biomaterials to overcome the difficulties in oxygen delivery and promoting 

cell growth would also be needed. Potential for looking into different type of 

exercise therapies to treat SCI should also be considered as part a study. Future 

research looking into different types of therapies to treat SCI should also be 

considered.  
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Chapter 8 

Conclusion 

The use of biomaterial scaffolds is increasing in use and seems to be where 

the treatment of SCI is leading in the future [2], [6]. BWSTT success in animal 

studies has not translated to human studies as ideally as initially hoped but it does 

serve as a vital building block for future work. In our study, we determined that 

there is kinematic recovery for the BWSTT and Combination group but the overall 

effect of the Combination therapy and BWSTT should be explored more, to give a 

better understanding of its efficacy. In terms of the Implant itself, it did not improve 

kinematics compared to the BWSTT and Combination groups but it did however 

perform better than the Injury group. Considering the potential for the use of 

biomaterials to treat SCI, many questions about its efficacy still need to be 

answered. This therapy can help provide more insight into how effective a 

biomaterial scaffold for treating SCI can be. 
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Appendix A 

Definitions and Aberrations  

ANS – Autonomic Nervous System 

ASIA – American Spinal Injury Association 

BDNF – Brain Derived Neurotrophic Factor 

BWS – Body Weight Support 

BWSTT – Body Weight Supported Treadmill Training 

CNS – Central Nervous System  

CSV – Comma Separated Values 

EMG – Electromyography 

ENS – Enteric Nervous System 

FDA – Food and Drug Administration 

FES – Functional Electrical Stimulation 

FPS – Frames per Second 

MATLAB – Matrix Laboratory 

NIH – National Institute of Health 

NSCISC – National Spinal Cord Injury Statistical Center 

NT – Neurotrophin 

NT-3 – Neurotrophin-3  

PHEMA – poly (2-hydroxyethyl methacrylate) 

PHPMA – poly[N-2-(hydroxypropyl) methacrylamide] 

PNIPAAm – poly (N-isopropyl acrylamide) 

PNIPAAm-g-PEG – poly (N-isopropyl acrylamide) with poly (ethylene glycol) 
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PNS – Peripheral Nervous System 

PT – Physical Therapy  

ROM – Range of Motion 

SC – Spinal Cord 

SCI – Spinal Cord Injury 

SNS – Somatic Nervous System 

TME – Too Much Error 

VBA – Visual Basic 
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Appendix B 

Stride Table
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Appendix C 

Main MATLAB Code
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Appendix D 

Plots from Remaining Speed and BWS Combinations7 cm/s – 75% BWS 

 

Appendix Figure 1. Stride Height Plot for the 5 groups, throughout all Weeks of the 
training for 7 cm/s and 75% BWS 

 

Baseline Week 4 Week 8

Baseline 2.3795225 2.3795225 2.3795225

Injury 2.3795225 1.91674 1.97822

BWSTT 2.3795225 1.828796667 2.141296667

Implant 2.3795225 1.662216667 1.994546667

Combination 2.3795225 1.791840152 2.092131667
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Appendix Figure 2. Stride Length Plot for the 5 groups, throughout all Weeks of the 
training for 7 cm/s and 75% BWS 
 

 

Appendix Figure 3. Hip Angles Plot for the 5 groups throughout all Weeks of the 
training for 7 cm/s and 75% BWS 

Baseline Week 4 Week 8

Baseline 4.98427875 4.98427875 4.98427875

Injury 4.98427875 4.17913 4.698204

BWSTT 4.98427875 4.45309 5.414713333

Implant 4.98427875 3.104650833 4.8559

Combination 4.98427875 4.09963197 5.356558333

0

1

2

3

4

5

6

7

8

S
tr

id
e

 L
e

n
g

th
 (

cm
) 

Baseline

Injury

BWSTT

Implant

Combination

n = 16 

n = 6 

n = 6 

n = 8 

n = 11 

n = 16 

n = 5 

n = 6 

n = 3 

n = 12 

n = 16 

n = 16 

n = 16 

n = 16 

n = 16 

Baseline Week 4 Week 8

Baseline 21.91107185 21.91107185 21.91107185

Injury 21.91107185 17.97923202 18.10504386

BWSTT 21.91107185 22.00303202 21.02120015

Implant 21.91107185 20.49752608 22.13477756

Combination 21.91107185 22.62422528 21.4980646

0

5

10

15

20

25

30

35

H
ip

 A
n

g
le

 (
d

e
g

) 

Baseline

Injury

BWSTT

Implant

Combination

n = 16 

n = 6 

n = 6 

n = 8 

n = 11 

n = 16 

n = 5 

n = 6 

n = 3 

n = 12 

n = 16 

n = 16 

n = 16 

n = 16 

n = 16 



www.manaraa.com

 

113 
 

 

Appendix Figure 4. Knee Angles Plot for the 5 groups throughout all Weeks of the 
training for 7 cm/s and 75% BWS 
 

 

Appendix Figure 5. Ankle Angles Plot for the 5 groups throughout all Weeks of the 
training for 7 cm/s and 75% BWS 

Baseline Week 4 Week 8
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Combination 39.21599094 31.46632926 42.28953003
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Appendix Figure 6. Averaged Mapped Angle Plots at Week 4 for the 5 groups 
throughout an average gait cycle for 7 cm/s and 75% BWS 
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Appendix Figure 7. Averaged Mapped Angle Plots at Week 8 for the 5 groups 
throughout an average gait cycle for 7 cm/s and 75% BWS 
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Appendix Figure 8. Swing Duration Plot for the 5 groups throughout all Weeks of the 
training for 7 cm/s and 75% BWS 

 

Appendix Figure 9. Stance Duration Plot for the 5 groups throughout all Weeks of 
the training for 7 cm/s and 75% BWS  
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7 cm/s – 65% BWS 

 

Appendix Figure 10. Stride Height Plot for the 5 groups, throughout all Weeks of the 
training for 7 cm/s and 65% BWS 
 

Baseline Week 4 Week 8

Baseline 2.345204 2.345204 2.345204

Injury 2.345204 1.8245 2.02791

BWSTT 2.345204 0 2.17534

Implant 2.345204 1.361916667 2.146453333

Combination 2.345204 1.788928889 2.195664444

0

0.5

1

1.5

2

2.5

3

S
tr

id
e

 H
e

ig
h

t 
(c

m
) 

Baseline

Injury

BWSTT

Implant

Combination

n = 5 

n = 2 

n = 0 

n = 2 

n = 3 

n = 5 

n = 4 

n = 4 

n = 2 

n = 9 

n = 5 

n = 5 

n = 5 

n = 5 

n = 5 



www.manaraa.com

 

118 
 

 

Appendix Figure 11. Stride Length Plot for the 5 groups, throughout all Weeks of the 
training for 7 cm/s and 65% BWS 

 

Appendix Figure 12. Hip Angles Plot for the 5 groups throughout all Weeks of the 
training for 7 cm/s and 65% BWS 
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Appendix Figure 13. Knee Angles Plot for the 5 groups throughout all Weeks of the 
training for 7 cm/s and 65% BWS 

 

Appendix Figure 14. Ankle Angles Plot for the 5 groups throughout all Weeks of the 
training for 7 cm/s and 65% BWS 
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Appendix Figure 15. Averaged Mapped Angle Plots at Week 4 for the 5 groups 
throughout an average gait cycle for 7 cm/s and 65% BWS 
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Appendix Figure 16. Averaged Mapped Angle Plots at Week 8 for the 5 groups 
throughout an average gait cycle for 7 cm/s and 65% BWS 
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Appendix Figure 17. Swing Duration Plot for the 5 groups throughout all Weeks of 
the training for 7 cm/s and 65% BWS 
 

 

Appendix Figure 18. Stance Duration Plot for the 5 groups throughout all Weeks of 
the training for 7 cm/s and 65% BWS 
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10 cm/s – 65% BWS 

 

Appendix Figure 19. Stride Height Plot for the 5 groups, throughout all Weeks of the 
training for 10 cm/s and 65% BWS 
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Appendix Figure 20. Stride Length Plot for the 5 groups, throughout all Weeks of the 
training for 10 cm/s and 65% BWS 

 

Appendix Figure 21. Hip Angles Plot for the 5 groups throughout all Weeks of the 
training for 10 cm/s and 65% BWS 
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Appendix Figure 22. Knee Angles Plot for the 5 groups throughout all Weeks of the 
training for 10 cm/s and 65% BWS 

 

Appendix Figure 23. Ankle Angles Plot for the 5 groups throughout all Weeks of the 
training for 10 cm/s and 65% BWS 
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Appendix Figure 24. Averaged Mapped Angle Plots at Week 4 for the 5 groups 
throughout an average gait cycle for 10 cm/s and 65% BWS 
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Appendix Figure 25. Averaged Mapped Angle Plots at Week 8 for the 5 groups 
throughout an average gait cycle for 10 cm/s and 65% BWS 
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Appendix Figure 26. Swing Duration Plot for the 5 groups throughout all Weeks of 
the training for 10 cm/s and 65% BWS 
 

 

Appendix Figure 27. Stance Duration Plot for the 5 groups throughout all Weeks of 
the training for 10 cm/s and 65% BWS 
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7 cm/s – 55% BWS 

 

Appendix Figure 28. Stride Height Plot for the 5 groups, throughout all Weeks of the 
training for 7 cm/s and 55% BWS 
 

Baseline Week 4 Week 8

Baseline 2.172176667 2.172176667 2.172176667

Injury 2.172176667 2.173746667 2.14098

BWSTT 2.172176667 0 2.33458

Implant 2.172176667 0 2.09082

Combination 2.172176667 2.05927 2.009913889

0

0.5

1

1.5

2

2.5

3

S
tr

id
e

 H
e

ig
h

t 
(c

m
) 

Baseline

Injury

BWSTT

Implant

Combination

n = 6 

n = 3 

n = 0 

n = 0 

n = 2 

n = 6 

n = 3 

n = 3 

n = 1 

n = 9 

n = 6 

n = 6 

n = 6 

n = 6 

n = 6 



www.manaraa.com

 

130 
 

 

Appendix Figure 29. Stride Length Plot for the 5 groups, throughout all Weeks of the 
training for 7 cm/s and 55% BWS 

 

Appendix Figure 30. Hip Angles Plot for the 5 groups throughout all Weeks of the 
training for 7 cm/s and 55% BWS 
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Appendix Figure 31. Knee Angles Plot for the 5 groups throughout all Weeks of the 
training for 7 cm/s and 55% BWS 

 

Appendix Figure 32. Ankle Angles Plot for the 5 groups throughout all Weeks of the 
training for 7 cm/s and 55% BWS 
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Appendix Figure 33. Averaged Mapped Angle Plots at Week 4 for the 5 groups 
throughout an average gait cycle for 7 cm/s and 55% BWS 
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Appendix Figure 34. Averaged Mapped Angle Plots at Week 8 for the 5 groups 
throughout an average gait cycle for 7 cm/s and 55% BWS 
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Appendix Figure 35. Swing Duration Plot for the 5 groups throughout all Weeks of 
the training for 7 cm/s and 55% BWS 
 

 

Appendix Figure 36. Stance Duration Plot for the 5 groups throughout all Weeks of 
the training for 7 cm/s and 55% BWS 
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10 cm/s – 55% BWS 

 

Appendix Figure 37. Stride Height Plot for the 5 groups, throughout all Weeks of the 
training for 10 cm/s and 55% BWS 
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Appendix Figure 38. Stride Length Plot for the 5 groups, throughout all Weeks of the 
training for 10 cm/s and 55% BWS 

 

Appendix Figure 39. Hip Angles Plot for the 5 groups throughout all Weeks of the 
training for 10 cm/s and 55% BWS 
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Appendix Figure 40. Knee Angles Plot for the 5 groups throughout all Weeks of the 
training for 10 cm/s and 55% BWS 

 

Appendix Figure 41. Ankle Angles Plot for the 5 groups throughout all Weeks of the 
training for 10 cm/s and 55% BWS 
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Appendix Figure 42. Averaged Mapped Angle Plots at Week 4 for the 5 groups 
throughout an average gait cycle for 10 cm/s and 55% BWS 
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Appendix Figure 43. Averaged Mapped Angle Plots at Week 8 for the 5 groups 
throughout an average gait cycle for 10 cm/s and 55% BWS 
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Appendix Figure 44. Swing Duration Plot for the 5 groups throughout all Weeks of 
the training for 10 cm/s and 55% BWS 
 

 

Appendix Figure 45. Stance Duration Plot for the 5 groups throughout all Weeks of 
the training for 10 cm/s and 55% BWS 
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Appendix E 

Average Mapped Plots MATLAB Code
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